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In-plane electronic anisotropy resulted from ordered magnetic
moment in iron-based superconductors
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We study the in-plane electronic anisotropy in the parent compounds of several families of Fe-based
superconductors (BaFe2As2, EuFe2As2, NaFeAs, LiFeAs, FeSe, and LaFeAsO) by polarization-resolved Raman
scattering. We measure intensity of the fully symmetric c-axis vibration of As atom mode in the XY scattering
geometry and notice that the mode’s intensity is significantly enhanced below the magnetostructural transition
only for compounds showing magnetic ordering. In particular, we find that the intensity ratio of this As phonon in
the XY vs. XX scattering geometries is proportional to the square of the ordered magnetic moment. We relate this
As phonon intensity enhancement below the Néel temperature in iron pnictides to in-plane electronic anisotropy
induced by the collinear spin-density wave order.
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The lattice, orbital, and magnetic degrees of freedom are
strongly coupled in the Fe-based superconductors. This is best
evidenced by the observation, in most parent compounds, of a
magnetic transition from paramagnetic to collinear antiferro-
magnetic (AFM), occurring at a temperature TN slightly below
the temperature TS at which a structural transition from tetrag-
onal to orthorhombic phase occurs. The interplay between
these degrees of freedom is complex and led to a chicken-egg
problem for which there is still no consensual view [1,2].
The electronic structure is directly affected by an electronic
band folding accompanied by the formation of a collinear
spin-density wave (SDW) gap [3–6]. As a result, a significant
electronic anisotropy was found for properties measured along
the two planar orthogonal Fe-Fe directions (Fig. 1) below
the magnetostructural transition, notably in electrical trans-
port [7], optical conductivity [8,9], thermopower [10], local
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density-of-states (DOS) imaging [11], and quasiparticle band
dispersions [12].

Raman scattering offers a unique way to study the elec-
tronic anisotropy below the magnetostructural transition of
the iron-based superconductors [6,13]. For example, one can
study the interband transitions along the two planar orthog-
onal Fe-Fe directions (Fig. 1) in a detwinned sample [6]
or investigate the As fully symmetric phonon in a twinned
sample [14].

In relation to this study, it has been noticed that the Raman
coupling vertex to the As fully symmetric phonon: the c-axis
vibration of As atom, which modulates the Fe-As-Fe bond
angle of the Fe-As tetrahedra (Fig. 1), - is forbidden for
XY scattering geometry in the tetragonal phase, whereas the
coupling becomes finite in the orthorhombic phase. However,
because orthorhombicity of the lattice constants δ for all
studied materials is weak, the emerging As mode’s inten-
sity due to geometrical lattice anisotropy is expected to be
small. Surprisingly, a significant intensity of the As phonon
in the nearly forbidden XY scattering geometry has been
observed for Ba(Fe1−xAux )2As2 below TN , in contrast to
the weak signals at temperatures between TS and TN [14].
Similar results were reported for Ba(Fe1−xCox )2As2 [15]. In
addition, the temperature dependence of integrated As phonon
intensity was reported to be proportional to square of the
magnetic moment M(T )2 below TN [14]. The origin of this
anomalous intensity enhancement was related to the in-plane
electronic anisotropy induced by the collinear SDW order
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FIG. 1. (a) Definition of the crystallographic directions in the
tetragonal 2-Fe unit cell above TS (light red shaded area) and
4-Fe orthorhombic magnetic unit cell below TN (black solid lines).
(b) Schematic diagram of the magnetic structure. Red arrows: Fe
local moments forming collinear AFM order. Blue arrows: c-axes
vibrations of the fully symmetric As phonon mode.

[14]. Furthermore, the Fano model analysis of data revealed
that temperature dependence of the Raman vertex amplitude
is proportional to magnitude of the magnetic order parameter
M(T ) [14]. While previous Raman study established the
intimate link between the As phonon intensity, the electronic
anisotropy and the magnetic order parameter by studying the
temperature and doping dependence of the As phonon in
the 122 system [14], a detailed study of this relation among
different families of iron-based superconductors where the
ordered magnetic moment varies is still lacking.

In this paper, we employ polarization resolved Raman scat-
tering spectroscopy to study the in-plane electronic anisotropy
for typical 122, 111, 1111, and 11 families of Fe-based super-
conductors. For all compounds showing magnetic ordering,
we observe a strong intensity for the fully symmetric As mode
appearing below TN in the nearly forbidden XY scattering
channel as a result of significantly enhanced anisotropy of the
in-plane electronic polarizability, while no such enhancement
is found for compounds without magnetically ordered state.
We also find that the ratio of the As phonon intensity in the
XY vs. XX scattering geometries, IXY /IXX , is proportional to
the square of the magnetic ordered moment M2. This conclu-
sion is consistent with previous study for Ba(Fe1−xAux )2As2

alloys [14]. Because the geometrical lattice anisotropy δ =
(a − b)/(a + b) below TS is relatively small, we conclude that
the intensity enhancement of the As phonon in the magnetic
phase originates from the collinear SDW order-induced in-
plane electronic anisotropy.

Single crystals of materials listed in Table I were grown
as described in Refs. [16–21]. The corresponding struc-
tural phase transition temperature (TS) and magnetic phase

TABLE I. Summary of TS , TN (in Kelvin), lattice orthorhombicity
[δ = (a − b)/(a + b)], intensity ratio of Ag phonon in XY vs. XX
geometries, and ordered magnetic moment/Fe M (in μB) for com-
pounds studied in this paper.

Sample TS/TN δ (%) IXY /IX X M

EuFe2As2 [16] 175/175 0.5 [22] 3.3 0.98 [23]
BaFe2As2 [16] 135/135 0.4 [24] 3.1 0.87 [25]
LaFeAsO [19,20] 155/137 0.24 [20] 0.54 0.36-0.6 [25]
NaFeAs [18] 55/40 0.18 [26] 0.16 0.09 [25]
FeSe [21] 90/– 0.25 [27] 0.017 –
LiFeAs [28] –/– 0 0 –

transition temperature (TN ) are summarized in Table I. Raman
measurements on BaFe2As2, NaFeAs, EuFe2As2, LiFeAs,
FeSe were performed using the spectrometer described in
Refs. [14]. The measurements of LaFeAsO were performed
in a back-scattering geometry using a T64000 triple-stage
spectrometer.

The phononic Raman scattering intensity is proportional
to I ∝ |êi · R · ês|2, where êi and ês are the polarization unit
vectors of the incoming and scattering light, respectively,
and R is the Raman tensor [29]. For the D4h point group
the XX , XY , X ′X ′, and X ′Y ′ polarization geometries probe
A1g + B1g, A2g + B2g, A1g + B2g, and A2g + B1g symmetry ex-
citations, respectively. In the orthorhombic phase with D2h

point group symmetry, the unit cell rotates by 45◦; the A1g and
B2g representations of the D4h point group merge into the Ag

representation of the D2h point group, and A2g and B1g (D4h)
merge into B1g (D2h). In the orthorhombic phase, the XX and
XY polarization geometries probe Ag + B1g and Ag symmetry
excitations, respectively [14].

Before investigating the behavior of the A1g/Ag symmetry
As phonon across the magnetostructural transitions, we first
examine the A1g and Ag Raman tensors:

AD4h
1g =

⎛
⎝

ā 0 0
0 ā 0
0 0 c̄

⎞
⎠, AD2h

g =

⎛
⎜⎜⎝

(ā′+b̄′ )
2

(ā′−b̄′ )
2 0

(ā′−b̄′ )
2

(ā′+b̄′ )
2 0

0 0 c̄

⎞
⎟⎟⎠,

where AD2h
g (orthorhombic phase) has been rotated by 45◦ to

keep the same XY Z axis notation as in the tetragonal phase.
Here, ā′ and b̄′ are the diagonal elements of the AD2h

g Raman
tensor in the natural coordinate system of the orthorhombic
phase (before the 45◦ rotation).

Accordingly, the A1g-symmetry mode is forbidden in the
XY scattering geometry in the tetragonal phase. This is the
case for LiFeAs, which shows neither structural nor magnetic
transition. As shown in Fig. 2(a), sharp Raman phonon peaks
at 186 cm−1 and 237 cm−1, corresponding to a A1g(As)
and a B1g(Fe) modes, respectively, are detected in the XX
scattering geometry. However, as expected for the tetragonal
structure of LiFeAs, these modes have no intensity in the XY
scattering geometry. Similar Raman results are reported for
the tetragonal Fe1+yTe0.6Se0.4 single crystal [30].

If anisotropy develops in the orthorhombic phase, the Ag

anion mode may acquire a finite intensity |(ā′ − b̄′)/2|2 in the
XY scattering geometry related to the anisotropy of the in-
plane polarizability associated to this Ag anion mode, because
ā′ and b̄′ are the polarizability derivatives along the two
Fe-Fe orthogonal directions (X ′ and Y ′) in the orthorhombic
phase. Since the lattice orthorhombicity δ is small (Table I),
the intensity due to geometrical anisotropy is expected to be
weak. For example, for the FeSe material, which exhibits a
structural phase transition at 90 K [31,32] but no long-range
magnetic ordering, we observe a Ag(Se) phonon at 180 cm−1

and a B1g(Fe) phonon at 208 cm−1 for the XX polarization
[Fig. 2(b)]. Although the intensity of the Ag(Se) phonon with
the XY polarization is finite at 20 K [inset of Fig. 2(b)], it is
only 2% of the corresponding intensity recorded for the XX
polarization (Table I) [13,33].
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FIG. 2. Comparison of Raman spectra (shifted for clarity) in XX and XY scattering geometries for different parent compounds: (a) LiFeAs,
(b) FeSe, (c) BaFe2As2, (d) LaFeAsO, (e) and (f) NaFeAs. When finite, the TN and TS values are indicated on the top of the corresponding
panel. (g) Ag(As) phonon intensity ratio in XY vs. XX geometries (IXY /IX X ) at 15 K as a function of the squared ordered magnetic moment/Fe
[23,25]. The black line is a linear fit.

In contrast, BaFe2As2 with strong magnetic ordering
clearly shows the 181 cm−1 Ag (As) mode [13,15,34,35] in
the XY scattering geometry below TN [Fig. 2(c)]. Similar ob-
servation is made for NaFeAs [Figs. 2(e) and 2(f)], which also
encounters both a structural and a magnetic phase transition:
(i) We observe only a weak intensity between TS and TN , and
(ii) the 162 cm−1 Ag(As) phonon mode appears in the XY
spectra only below TN . LaFeAsO [36–38] is another system
with split structural and magnetic phase transitions. In this
case as well, we detect sizable intensity for the A1

g (in-phase
La and As) mode at 166 cm−1 and the A2

g (out-of-phase La and
As) mode at 209 cm−1 in the XY scattering geometry below
TN [Fig. 2(d)].

To quantify the intensity of the Ag(As) phonon in the XY
scattering geometry below TN in different families of Fe-based
superconductors, we study the ratio between the Ag(As) mode
intensity in the XY and XX scattering geometries IXY /IXX .
This ratio is proportional to |(ā′ − b̄′)/(ā′ + b̄′)|2, which is a
direct measure of the in-plane polarizability anisotropy of the
Ag(As) mode. Based on Table I, the ratio IXY /IXX is significant
only for compounds with long-range magnetic ordering. For
example, the ratio IXY /IXX is 300% for BaFe2As2, 16% for
NaFeAs and 50% for LaFeAsO, as compared to 2% for FeSe,
i.e., 1–2 orders of magnitude smaller. Such behavior cannot be
solely explained by weak geometrical lattice orthorhombicity
δ, instead, the observation relates the mode’s intensity to
magnetic order parameter. This is best evident from Fig. 2(g),

where we show that the IXY /IXX ratio of the Ag(As) phonon
intensity for different Fe-based families is proportional to the
square of the magnetic moment M2.

In conclusion, we revealed a significant intensity enhance-
ment of the emergent Ag(As) phonon mode in the XY scat-
tering geometry below TN only for parent compounds of
Fe-based superconductors showing magnetic order. We
demonstrate that the ratio of the As phonon intensity in the
XY and XX scattering geometries IXY /IXX is proportional to
the square of the magnetic ordered moment M2. We conclude
that the generic Ag(As) phonon intensity enhancement below
TN in iron pnictides is due to the in-plane electronic anisotropy
induced by the collinear SDW order: a larger ordered moment
in the magnetic phase results in lager in-plane electronic
anisotropy, which in turn cause larger As phonon intensity
ratio IXY /IXX below TN .
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